Phytoremediation Technologies for Heavy Metal Contaminated Soils

Authors

  • Lourdes Villanueva Department of Synthetic Plant Biology, University of the Philippines Diliman, Quezon City, Manila, Philippines Author

DOI:

https://doi.org/10.64229/9dspd045

Keywords:

Phytoremediation, Heavy Metals, Hyperaccumulator, Phytoextraction, Phytostabilization, Soil Contamination, Plant Growth-Promoting Rhizobacteria, Chelate-Assisted Remediation, Genetic Engineering

Abstract

Soil contamination by heavy metals (e.g., Cd, Pb, Cr, As, Hg, Ni, Zn, Cu) poses a severe threat to global ecosystems, food security, and human health. Traditional physical and chemical remediation methods are often prohibitively expensive, destructive to soil ecology, and unsuitable for large-scale applications. Phytoremediation, the use of plants and their associated microbiota to stabilize, extract, degrade, or volatilize contaminants, has emerged as a promising, cost-effective, solar-driven, and ecologically sustainable alternative. This comprehensive review synthesizes the state-of-the-art in phytoremediation technologies specifically designed for heavy metal-contaminated soils. We detail the core mechanisms: phytoextraction (uptake and accumulation in harvestable biomass), phytostabilization (immobilization and reduction of bioavailability), phytovolatilization (conversion and release to the atmosphere), and phytodegradation/rhizodegradation (microbial degradation in the root zone). A critical analysis of hyperaccumulator species-their discovery, physiology, and genetic basis for metal tolerance and accumulation-is provided. The review further examines the pivotal role of soil amendments (chelators, biochar, fertilizers) and plant growth-promoting rhizobacteria (PGPR) in enhancing remediation efficiency. We evaluate the agronomic management practices for field-scale application and present a series of global case studies showcasing successful implementation. However, significant challenges remain, including slow remediation rates, biomass disposal, potential for food chain contamination, and climate dependencies. This article explores cutting-edge strategies to overcome these limitations, such as genetic engineering for enhanced metal uptake and tolerance, intercropping systems, and the integration of phytoremediation with bioenergy production (phytomining). Finally, we propose a multi-criteria framework for technology selection and outline future research directions aimed at optimizing phytoremediation for wider commercial and environmental adoption, positioning it as a cornerstone of the circular economy and sustainable land management.

References

[1]Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31(1), 109-120. https://doi.org/10.2134/jeq2002.1090

[2]Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., & Baker, A. J. M. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8(3), 279-284. https://doi.org/10.1016/S0958-1669(97)80004-3

[3]Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169-181. https://doi.org/10.1016/j.plantsci.2010.08.016

[4]Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579-579. https://doi.org/10.1038/35054664

[5]Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643-668. https://doi.org/10.1146/annurev.arplant.49.1.643

[6]Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., ... & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765-794. https://doi.org/10.1007/s11356-009-0213-6

[7]Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517-534. https://doi.org/10.1146/annurev-arplant-042809-112156

[8]Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., ... & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116

[9]Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075

[10]Lebeau, T., Braud, A., & Jézéquel, K. (2008). Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environmental Pollution, 153(3), 497-522. https://doi.org/10.1016/j.envpol.2007.09.015

[11]Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30(6), 1562-1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

[12]Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269-3282. https://doi.org/10.1016/j.envpol.2011.07.023

[13]Van der Ent, A., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362(1-2), 319-334. https://doi.org/10.1007/s11104-012-1287-3

[14]Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1-3), 1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113

[15]Yang, X., Feng, Y., He, Z., & Stoffella, P. J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 339-353. https://doi.org/10.1016/j.jtemb.2005.02.007

[16]Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1-4), 105-126. https://doi.org/10.1007/s11270-007-9401-5

[17]McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277-282. https://doi.org/10.1016/S0958-1669(03)00060-0

[18]Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

Downloads

Published

2025-12-11

Issue

Section

Articles