A Systems Biology Perspective on Plant Hormonal Signaling Networks
DOI:
https://doi.org/10.64229/63j4zt66Keywords:
Systems Biology, Plant Hormones, Signaling Networks, Mathematical Modeling, Omics Integration, Network Topology, Abscisic Acid, Phenotypic PlasticityAbstract
Plant hormonal signaling networks are the central processing units that translate environmental and developmental cues into adaptive growth and physiological responses. Traditionally studied through a reductionist lens, our understanding has been revolutionized by the advent of systems biology. This approach integrates high-throughput omics data (genomics, transcriptomics, proteomics, metabolomics) with computational modeling to construct holistic, predictive models of these complex networks. This review synthesizes how a systems biology perspective has elucidated the dynamic, interconnected nature of plant hormone signaling. We explore how network topology analysis has revealed key regulatory nodes and emergent properties, such as cross-talk and feedback loops, that govern system-wide behavior. We discuss the application of mathematical modeling-from ordinary differential equations to Boolean networks-in simulating hormone dynamics and predicting plant phenotypes under various conditions. The review highlights case studies in major hormones like auxin, cytokinin, abscisic acid, and jasmonic acid, demonstrating how systems-level analyses have decoded their synergistic and antagonistic interactions. Furthermore, we examine the role of multi-omics integration in uncovering novel regulatory components and providing a mechanistic understanding of phenotypic plasticity. Finally, we address current challenges, including spatial-temporal resolution and single-cell analyses, and future prospects for leveraging this knowledge in synthetic biology and climate-resilient crop design. By moving from parts lists to system principles, systems biology is poised to unlock the full potential of hormonal engineering for sustainable agriculture.
References
[1]Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, *459*(7250), 1071–1078. https://doi.org/10.1038/nature08122
[2]Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, *16*, 86. https://doi.org/10.1186/s12870-016-0771-y
[3]Ideker, T., Galitski, T., & Hood, L. (2001). A new approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics, *2*, 343–372. https://doi.org/10.1146/annurev.genom.2.1.343
[4]Zhu, J., Adli, M., Zou, J. Y., Verstappen, G., Coyne, M., Zhang, X., Durham, T., Miri, M., Deshpande, V., De Jager, P. L., Bennett, D. A., Houmard, J., Muoio, D. M., Onder, T. T., Camahort, R., Cowan, C. A., Meissner, A., Epstein, C. B., Shoresh, N., & Bernstein, B. E. (2013). Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell, *152*(3), 642–654. https://doi.org/10.1016/j.cell.2012.12.033
[5]Brady, S. M., Orlando, D. A., Lee, J. Y., Wang, J. Y., Koch, J., Dinneny, J. R., Mace, D., Ohler, U., & Benfey, P. N. (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science, *318*(5851), 801–806. https://doi.org/10.1126/science.1146265
[6]Fàbregas, N., Lozano-Elena, F., Blasco-Escámez, D., Tohge, T., Martínez-Andújar, C., Albacete, A., Osorio, S., Bustamante, M., Riechmann, J. L., Nomura, T., Yokota, T., Conesa, A., Alfocea, F. P., Fernie, A. R., & Caño-Delgado, A. I. (2018). Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature Communications, *9*(1), 4680. https://doi.org/10.1038/s41467-018-06861-3
[7]Mutwil, M., Klie, S., Tohge, T., Giorgi, F. M., Wilkins, O., Campbell, M. M., Fernie, A. R., Usadel, B., Nikoloski, Z., & Persson, S. (2011). PlaNet: Combined sequence and expression comparisons across plant networks derived from seven species. The Plant Cell, *23*(3), 895–910. https://doi.org/10.1105/tpc.111.083667
[8]Dreze, M., Monachello, D., Lurin, C., Cusick, M. E., Hill, D. E., Vidal, M., & Braun, P. (2010). High-quality binary interactome mapping. Methods in Enzymology, *470*, 281–315. https://doi.org/10.1016/S0076-6879(10)70012-4
[9]Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics, *8*(6), 450–461. https://doi.org/10.1038/nrg2102
[10]Middleton, A. M., King, J. R., Bennett, M. J., & Owen, M. R. (2010). Mathematical modelling of the Aux/IAA negative feedback loop. Bulletin of Mathematical Biology, *72*(6), 1383-1402. https://doi.org/10.1007/s11538-009-9497-4
[11]Sweetlove, L. J., & Ratcliffe, R. G. (2011). Flux-balance modeling of plant metabolism. Frontiers in Plant Science, *2*, 38. https://doi.org/10.3389/fpls.2011.00038
[12]Dharmasiri, N., Dharmasiri, S., & Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature, *435*(7041), 441–445. https://doi.org/10.1038/nature03543
[13]Vernoux, T., Brunoud, G., Farcot, E., Morin, V., Van den Daele, H., Legrand, J., Oliva, M., Das, P., Larrieu, A., Wells, D., Guédon, Y., Armitage, L., Picard, F., Guyomarc'h, S., Cellier, C., Parry, G., Koumproglou, R., Doonan, J. H., Estelle, M., … Bennett, M. J. (2011). The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology, *7*, 508. https://doi.org/10.1038/msb.2011.39
[14]Müller, B., & Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, *453*(7198), 1094–1097. https://doi.org/10.1038/nature06943
[15]Middleton, A. M., Úbeda-Tomás, S., Griffiths, J., Holman, T., Hedden, P., Thomas, S. G., Phillips, A. L., Holdsworth, M. J., Bennett, M. J., King, J. R., & Owen, M. R. (2012). Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proceedings of the National Academy of Sciences, *109*(19), 7571–7576. https://doi.org/10.1073/pnas.1113666109
[16]Hickman, R., Hill, C., Penfold, C. A., Breeze, E., Bowden, L., Moore, J. D., Zhang, P., Jackson, A., Cooke, E., Bewicke-Copley, F., Mead, A., Beynon, J., Wild, D. L., Denby, K. J., Ott, S., & Buchanan-Wollaston, V. (2013). A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. The Plant Journal, *75*(1), 26–39. https://doi.org/10.1111/tpj.12194
[17]Moubayidin, L., Perilli, S., Dello Ioio, R., Di Mambro, R., Costantino, P., & Sabatini, S. (2010). The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Current Biology, *20*(12), 1138–1143. https://doi.org/10.1016/j.cub.2010.05.035
[18]Stepanova, A. N., Yun, J., Likhacheva, A. V., & Alonso, J. M. (2007). Multilevel interactions between ethylene and auxin in Arabidopsis roots. The Plant Cell, *19*(7), 2169–2185. https://doi.org/10.1105/tpc.107.052068
[19]Jones, A. M., Danielson, J. Å., ManojKumar, S. N., Lanquar, V., Grossmann, G., & Frommer, W. B. (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife, *3*, e01741. https://doi.org/10.7554/eLife.01741
[20]Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences, *104*(47), 18842–18847. https://doi.org/10.1073/pnas.0708139104
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Luca Romano (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.