CRISPR-Cas9-Mediated Crop Genome Editing: From Basic Research to Breeding Applications
DOI:
https://doi.org/10.64229/e5whn229Keywords:
CRISPR-Cas9, Genome Editing, Crop Breeding, Functional Genomics, Agricultural Biotechnology, Food SecurityAbstract
The advent of CRISPR-Cas9 technology has catalyzed a paradigm shift in plant biology and agricultural biotechnology. This revolutionary genome-editing tool, derived from a prokaryotic adaptive immune system, offers unprecedented precision, efficiency, and versatility in modifying crop genomes. This review systematically charts the journey of CRISPR-Cas9 from a foundational research tool to a powerful driver of modern crop breeding. We begin by elucidating the fundamental mechanisms of the CRISPR-Cas9 system, including the engineering of Cas9 variants and the development of diverse delivery methods such as Agrobacterium-mediated transformation and ribonucleoprotein (RNP) complexes. We then explore its extensive applications in basic plant research, highlighting its role in functional genomics through targeted gene knockouts, transcriptional regulation, and epigenetic modifications. The core of this article focuses on the translational application of CRISPR-Cas9 in crop improvement, presenting landmark cases where the technology has been successfully deployed to enhance yield, nutritional quality, abiotic stress tolerance, and disease resistance in major cereal, vegetable, and fruit crops. We critically discuss the current global regulatory landscape for CRISPR-edited crops, which is pivotal for their commercial trajectory. Finally, we address persistent challenges-including off-target effects, delivery efficiency in recalcitrant species, and societal acceptance-and outline future perspectives, such as the integration of base editing, prime editing, and multiplexed editing strategies. By bridging the gap between laboratory innovation and field application, CRISPR-Cas9 is poised to make an indispensable contribution to global food security and sustainable agricultural systems.
References
[1]Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, *337*(6096), 816–821. https://doi.org/10.1126/science.1225829
[2]Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, *529*(7587), 490–495. https://doi.org/10.1038/nature16526
[3]Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., Zeina, C. M., Gao, X., Rees, H. A., Lin, Z., & Liu, D. R. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, *556*(7699), 57–63. https://doi.org/10.1038/nature26155
[4]Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M., & Mahfouz, M. M. (2015). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnology Journal, *13*(4), 578–589. https://doi.org/10.1111/pbi.12284
[5]Woo, J. W., Kim, J., Kwon, S. I., Corvalán, C., Cho, S. W., Kim, H., Kim, S. G., Kim, S. T., Choe, S., & Kim, J. S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, *33*(11), 1162–1164. https://doi.org/10.1038/nbt.3389
[6]Lu, Y., Ye, X., Guo, R., Huang, J., Wang, W., Tang, J., Tan, L., Zhu, J. K., Chu, C., & Qian, Y. (2017). Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Molecular Plant, *10*(9), 1242–1245. https://doi.org/10.1016/j.molp.2017.06.007
[7]Gallego-Bartolomé, J., Gardiner, J., Liu, W., Papikian, A., Ghoshal, B., Kuo, H. Y., Zhao, J. M.-C., Segal, D. J., & Jacobsen, S. E. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences, *115*(9), E2125–E2134. https://doi.org/10.1073/pnas.1716945115
[8]Zhang, L., Li, Z., Garraway, J., Cai, Q., Zhou, Y., Li, X., Hu, Z., Zhang, M. and Yang, J. (2020), The casein kinase 2 β subunit CK2B1 is required for swollen stem formation via cell cycle control in vegetable Brassica juncea. Plant J., 104: 706-717. https://doi.org/10.1111/tpj.14958
[9]Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Zhao, Q., & Xu, C. (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, *36*(12), 1160–1163. https://doi.org/10.1038/nbt.4273
[10]Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, *32*(9), 947–951. https://doi.org/10.1038/nbt.2969
[11]Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Guo, X., Du, W., Zhao, Y., & Xia, L. (2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, *9*(4), 628–631. https://doi.org/10.1016/j.molp.2016.01.001
[12]Lemmon, Z. H., Reem, N. T., Dalrymple, J., Soyk, S., Swartwood, K. E., Rodriguez-Leal, D., Van Eck, J., & Lippman, Z. B. (2018). Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants, *4*(10), 766–770. https://doi.org/10.1038/s41477-018-0259-x
[13]Callaway, E. (2018). CRISPR plants now subject to tough GM laws in European Union. Nature, *560*(7716), 16. https://doi.org/10.1038/d41586-018-05814-6
[14]Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, *576*(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4
[15]Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2020). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, *29*, 207–221. https://doi.org/10.1016/j.jare.2020.10.003
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jennifer Mitchell (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.